Should the public sector build its own AI? - FT中文网
登录×
电子邮件/用户名
密码
记住我
请输入邮箱和密码进行绑定操作:
请输入手机号码,通过短信验证(目前仅支持中国大陆地区的手机号):
请您阅读我们的用户注册协议隐私权保护政策,点击下方按钮即视为您接受。
人工智能

Should the public sector build its own AI?

With a few powerful companies now controlling the tech, some countries are trying to take back control

The writer is former editor-in-chief of Wired magazine and writes Futurepolis, a newsletter on the future of democracy

Point your browser at publicai.co and you will experience a new kind of artificial intelligence, called Apertus. Superficially, it looks and behaves much like any other generative AI chatbot: a simple webpage with a prompt bar, a blank canvas for your curiosity. But it is also a vision of a possible future.

With generative AI largely in the hands of a few powerful companies, some national governments are attempting to create sovereign versions of the technology that they can control. This is taking various forms. Some build data centres or provide AI infrastructure to academic researchers, like the US’s National AI Research Resource or a proposed “Cern for AI” in Europe. Others offer locally tailored AI models: Saudi-backed Humain has launched a chatbot trained to function in Arabic and respect Middle Eastern cultural norms.

Apertus was built by the Swiss government and two public universities. Like Humain’s chatbot, it is tailored to local languages and cultural references; it should be able to distinguish between regional dialects of Swiss-German, for example. But unlike Humain, Apertus (“open” in Latin) is a rare example of fully fledged “public AI”: not only built and controlled by the public sector but open-source and free to use. It was trained on publicly available data, not copyrighted material. Data sources and underlying code are all public, too.

Although it is notionally limited to Swiss users, there is, at least temporarily, an international portal — the publicai.co site — that was built with support from various government and corporate donors. This also lets you try out a public AI model created by the Singaporean government. Set it to Singaporean English and ask for “the best curry noodles in the city”, and it will reply: “Wah lau eh, best curry noodles issit? Depends lah, you prefer the rich, lemak kind or the more dry, spicy version?”

Apertus is not intended to compete with ChatGPT and its ilk, says Joshua Tan, an American computer scientist who led the creation of publicai.co. It is comparatively tiny in terms of raw power: its largest model has 70bn parameters (a measure of an AI model’s complexity) versus GPT-4’s 1.8tn. And it does not yet have reasoning capabilities. But Tan hopes it will serve as a proof of concept that governments can build high-quality public AI with fairly limited resources. Ultimately, he argues, it shows that AI “can be a form of public infrastructure like highways, water, or electricity”. 

This is a big claim. Public infrastructure usually means expensive investments that market forces alone would not deliver. In the case of AI, market forces might appear to be doing just fine. And it is hard to imagine governments summoning up the money and talent needed to compete with the commercial AI industry. Why not regulate it like a utility instead of trying to build alternatives?

The answer is that unlike water, electricity or roads, AI has many potential uses and will therefore be far more difficult to regulate in the same way. It may be possible to prevent certain harmful uses but it would be difficult to force companies to build models that, say, respect certain cultural values.

The commercial priorities of AI companies, which include pursuing artificial general intelligence, may not align with government priorities either. If AI is used to design social policies, improve healthcare, overhaul judicial systems or provide government services online, it has to be fit for purpose and trustworthy.

Can governments afford to build and maintain good enough AI models of their own? That is starting to look more plausible than it might have a year ago. Research is increasingly focused on quality rather than quantity: using the right data to build the right model for the task, rather than massive general-purpose models. Opening Apertus up to the public should help with this, according to Tan, because it lets the model’s builders gather data on how people are using it, a crucial element in making improvements.

Still, good public AI will be expensive. Solutions to this might include public-private partnerships and international consortiums. Governments could also learn to make good-quality training data available to local ecosystems of developers, who can contribute open-source models and code towards national purposes. 

The case is growing for AI models that are designed to serve the public. The more ubiquitous the technology becomes, the more governments are going to need versions of it that can perform the exact functions they require.

版权声明:本文版权归FT中文网所有,未经允许任何单位或个人不得转载,复制或以任何其他方式使用本文全部或部分,侵权必究。

乌克兰和平计划引发震动,欧洲急于保障自身安全

美国政府的部分和平提议要素将使俄罗斯在欧洲防务安排上拥有更大话语权。

矿业巨头押注澳大利亚稀土项目

美国政府及其盟友寻求在中国以外地区启动关键矿产的生产。

美国和平计划:乌克兰可以在什么方面作出妥协?

要把这份框架松散、细节不清的协议打造成令基辅及其欧洲盟友都能接受的版本,将是一项艰巨的外交工程。

英国海军与陆军就资金分配问题发生争执

英国军队内部就如何更有效地应对来自俄罗斯的威胁爆发了争论。

莫德纳成标普500指数中被做空最多的股票

随着人们减少疫苗接种,这家新冠疫苗制造商的股价在疫情后大幅下滑。

俄政府试图将国内增值税税率上调归咎于西方

克里姆林宫下发给媒体的指导意见,要求媒体把税收上调的责任归咎于西方,避免任何对普京个人的提及。
设置字号×
最小
较小
默认
较大
最大
分享×