Should the public sector build its own AI? | 公共部门该不该打造自己的AI? - FT中文网
登录×
电子邮件/用户名
密码
记住我
请输入邮箱和密码进行绑定操作:
请输入手机号码,通过短信验证(目前仅支持中国大陆地区的手机号):
请您阅读我们的用户注册协议隐私权保护政策,点击下方按钮即视为您接受。
人工智能

Should the public sector build its own AI?
公共部门该不该打造自己的AI?

With a few powerful companies now controlling the tech, some countries are trying to take back control
如今这项技术掌握在少数几家大公司手中,一些国家正尝试夺回控制权。
The writer is former editor-in-chief of Wired magazine and writes Futurepolis, a newsletter on the future of democracy
作者曾任《连线》(Wired)杂志总编辑,现撰写“Futurepolis”通讯,聚焦民主的未来
Point your browser at publicai.co and you will experience a new kind of artificial intelligence, called Apertus. Superficially, it looks and behaves much like any other generative AI chatbot: a simple webpage with a prompt bar, a blank canvas for your curiosity. But it is also a vision of a possible future.
打开浏览器访publicai.co,你会遇见一种名为Apertus的新型人工智能。表面上,它看起来和其他生成式AI聊天机器人没什么不同:一个简单的网页,一个输入栏,以及一块留给好奇心的空白画布。但它同时也展现了一种可能的未来图景。
With generative AI largely in the hands of a few powerful companies, some national governments are attempting to create sovereign versions of the technology that they can control. This is taking various forms. Some build data centres or provide AI infrastructure to academic researchers, like the US’s National AI Research Resource or a proposed “Cern for AI” in Europe. Others offer locally tailored AI models: Saudi-backed Humain has launched a chatbot trained to function in Arabic and respect Middle Eastern cultural norms.
由于生成式AI主要掌握在少数强大公司手中,一些国家政府正尝试打造可由自己掌控的主权版技术。这些努力形式各异:有的建设数据中心或为学术研究人员提供AI基础设施,例如美国国家AI研究资源(National AI Research Resource),以及欧洲拟议中的“AI版欧洲核子研究中心(Cern for AI)”;也有的推出本地化AI模型,例如在沙特支持下成立的Humain公司,已发布一款聊天机器人,专门以阿拉伯语训练,并符合中东的文化规范。
Apertus was built by the Swiss government and two public universities. Like Humain’s chatbot, it is tailored to local languages and cultural references; it should be able to distinguish between regional dialects of Swiss-German, for example. But unlike Humain, Apertus (“open” in Latin) is a rare example of fully fledged “public AI”: not only built and controlled by the public sector but open-source and free to use. It was trained on publicly available data, not copyrighted material. Data sources and underlying code are all public, too.
Apertus由瑞士政府和两所公立大学共同打造。和Humain的聊天机器人一样,它也针对本地语言和文化进行了调整,例如能分辨瑞士德语的不同方言。但与Humain不同,Apertus——拉丁语意为“开放”——是少有的真正意义上的“公共AI”案例:不仅由公共部门建设和掌控,而且开源且免费使用。它的训练数据完全来自公开资料,而非受版权保护的内容,数据来源和底层代码也全部公开。
Although it is notionally limited to Swiss users, there is, at least temporarily, an international portal — the publicai.co site — that was built with support from various government and corporate donors. This also lets you try out a public AI model created by the Singaporean government. Set it to Singaporean English and ask for “the best curry noodles in the city”, and it will reply: “Wah lau eh, best curry noodles issit? Depends lah, you prefer the rich, lemak kind or the more dry, spicy version?”
虽然理论上只限瑞士用户使用,但目前至少暂时存在一个国际入口——publicai.co网站,该网站由多个政府和企业捐助支持建立。在这里你还可以试用由新加坡政府开发的公共AI模型。把语言设置为新加坡英语(Singaporean English),然后问它“全城最好吃的咖喱面在哪儿”,它会回答:“Wah lau eh,best curry noodles issit?Depends lah,你是喜欢那种浓郁奶香(lemak)的,还是偏干辣的版本?”
Apertus is not intended to compete with ChatGPT and its ilk, says Joshua Tan, an American computer scientist who led the creation of publicai.co. It is comparatively tiny in terms of raw power: its largest model has 70bn parameters (a measure of an AI model’s complexity) versus GPT-4’s 1.8tn. And it does not yet have reasoning capabilities. But Tan hopes it will serve as a proof of concept that governments can build high-quality public AI with fairly limited resources. Ultimately, he argues, it shows that AI “can be a form of public infrastructure like highways, water, or electricity”. 
Apertus并不是为了和ChatGPT等产品竞争,publicai.co创建负责人、美国计算机科学家Joshua Tan说。在算力上它相对微小:最大模型只有700亿参数——衡量AI模型复杂度的指标——而GPT-4则高达1.8万亿。而且它目前还不具备推理能力。但Tan希望,它能作为一个概念验证,证明政府即便在资源有限的情况下,也能打造高质量的公共AI。他最终强调,这表明AI“可以像公路、自来水或电力一样,成为一种公共基础设施”。
This is a big claim. Public infrastructure usually means expensive investments that market forces alone would not deliver. In the case of AI, market forces might appear to be doing just fine. And it is hard to imagine governments summoning up the money and talent needed to compete with the commercial AI industry. Why not regulate it like a utility instead of trying to build alternatives?
这是一项大胆的主张。公共基础设施通常意味着需要巨额投资,而这些投资单靠市场力量是无法实现的。但在AI领域,市场力量似乎运转得挺好。很难想象各国政府能筹集到足够的资金和人才,与商业AI产业竞争。那么,为什么不把它像公用事业那样加以监管,而要另起炉灶去建设替代品呢?
The answer is that unlike water, electricity or roads, AI has many potential uses and will therefore be far more difficult to regulate in the same way. It may be possible to prevent certain harmful uses but it would be difficult to force companies to build models that, say, respect certain cultural values.
答案是,AI不同于水、电或公路,它的潜在用途非常广泛,因此很难用同样的方式进行监管。或许可以阻止某些有害用途,但要强迫企业去打造、比如必须尊重特定文化价值观的模型,却几乎不可能。
The commercial priorities of AI companies, which include pursuing artificial general intelligence, may not align with government priorities either. If AI is used to design social policies, improve healthcare, overhaul judicial systems or provide government services online, it has to be fit for purpose and trustworthy.
AI公司的商业优先事项——包括追求通用人工智能——也未必与政府目标一致。如果AI被用于制定社会政策、改善医疗、改革司法体系或提供线上政务服务,那么它必须切合用途,而且值得信赖。
Can governments afford to build and maintain good enough AI models of their own? That is starting to look more plausible than it might have a year ago. Research is increasingly focused on quality rather than quantity: using the right data to build the right model for the task, rather than massive general-purpose models. Opening Apertus up to the public should help with this, according to Tan, because it lets the model’s builders gather data on how people are using it, a crucial element in making improvements.
各国政府能否负担得起自行建设和维护足够好用的AI模型?这一点如今看起来比一年前更有可能了。研究正越来越强调质量而非数量:重点是用合适的数据,针对具体任务打造合适的模型,而不是一味追求庞大的通用模型。Tan表示,将Apertus向公众开放有助于这一方向,因为这样模型的开发者就能收集到人们实际使用它的数据,而这是改进过程中的关键要素。
Still, good public AI will be expensive. Solutions to this might include public-private partnerships and international consortiums. Governments could also learn to make good-quality training data available to local ecosystems of developers, who can contribute open-source models and code towards national purposes. 
不过,打造优质的公共AI依然会很昂贵。应对之道可能包括公私合作伙伴关系和国际联盟。政府也可以学会向本地开发者生态系统提供高质量的训练数据,让他们贡献开源模型和代码,为国家目标服务。
The case is growing for AI models that are designed to serve the public. The more ubiquitous the technology becomes, the more governments are going to need versions of it that can perform the exact functions they require.
支持建设公共服务型AI模型的理由正越来越多。随着这项技术日益普及,各国政府将愈发需要能精确满足自身职能需求的AI版本。
版权声明:本文版权归FT中文网所有,未经允许任何单位或个人不得转载,复制或以任何其他方式使用本文全部或部分,侵权必究。

为什么AI很难发现新药?

上一代初创企业未能兑现当时的夸张宣传。企业高管如今押注更强大的AI工具将攻克人体生物学的复杂难点。

现代汽车:卷入美国移民突袭风暴的车企

这家试图助力美国制造业发展的韩国企业,正面临特朗普加征的更高关税,并在韩国国内面临罢工。

欧洲对德拉吉方案推进缓慢

意大利前总理德拉吉发布竞争力报告一年后,欧盟仅落实了其想法的11.2%。

瑞穗CEO:瑞穗具备跻身全球前十投行的“所有要素”

在完成对格林希尔的整合后,这家日本集团已准备好在美国市场迎战美国竞争对手。

SpaceX巧妙闯入投资者“轨道”

EchoStar从濒临破产,摇身一变成为押注全球最大“独角兽”的间接途径。

石油巨头因油价低迷大幅削减工作岗位与投资

石油业高管们准备迎接可能将持续多年的低迷期。
设置字号×
最小
较小
默认
较大
最大
分享×