Can ChatGPT win a Fields Medal? | ChatGPT 能否获得菲尔兹奖? - FT中文网
登录×
电子邮件/用户名
密码
记住我
请输入邮箱和密码进行绑定操作:
请输入手机号码,通过短信验证(目前仅支持中国大陆地区的手机号):
请您阅读我们的用户注册协议隐私权保护政策,点击下方按钮即视为您接受。
FT英语电台

Can ChatGPT win a Fields Medal?
ChatGPT 能否获得菲尔兹奖?

New AI models could soon pose a threat to the world’s top mathematicians
新型人工智能模型在解决数学难题方面的能力正迅速提升。其在极具挑战性的全新问题上的表现,已对全球顶尖数学家构成威胁。
00:00

undefined

The writer is a science commentator

When Yang-Hui He, a fellow at the London Institute for Mathematical Sciences, received an invitation to an all-expenses paid weekend held in Berkeley, California, last month, it was a no-brainer. The trip would afford the Oxford university lecturer, an expert in algebraic geometry and string theory, insider access to a potentially historic moment for his discipline.

Plus, the brief sounded fun: working with other top mathematicians to find out if the most advanced AI models, when confronted with brand new problems, could rival or exceed the collaborative reasoning abilities of the best human minds. The answer? The machines did better than expected. “I’m not saying we felt existentially threatened but there was a general feeling of awe,” He told me. He also flew back $1,500 richer after dreaming up a problem that stumped the AI. 

Using AI to crack maths puzzles is not new. In early 2024, Google DeepMind unveiled technology that could hold its own in high-school student maths competitions. But interacting with the latest AI models last month felt more “like working with a very, very good graduate student”.

This moment could potentially change the profession. While the prospect of a machine securing a Fields Medal — widely regarded as mathematics’ equivalent of a Nobel Prize — still feels reassuringly distant, one can envision an unsettling future in which graduate maths programmes are pruned, university departments are shuttered, and the torch of Pythagoras and Euclid passed to a faceless silicon successor.

The weekend in mid-May was organised by Epoch AI, a US-based non-profit organisation that benchmarks AI capabilities. In an initiative set up last autumn called FrontierMath, Epoch paid professional mathematicians to submit novel problems along with their solutions, proofs and derivations, that could be used to challenge AI models.

These specially crafted conundrums, earning their creators up to $1,000 apiece and graded into three tiers of difficulty (including undergraduate and research level), were collected by Epoch via the secure messaging app Signal, so that they could not be inadvertently included in AI training data scraped from the internet. By April this year, Scientific American reported, an OpenAI model had confounded expectations by solving around a fifth of them.

And so it was time for tier 4 challenges: super-tricky problems that would take top academics weeks or months to solve collaboratively — and designed to resist AI guesswork or brute force number-crunching. Thirty academic experts, including He, met at Epoch’s Berkeley offices to brainstorm some new problems in person. Again, secrecy prevailed: lunches and dinners were brought in; attendees signed non-disclosure agreements and He recalled needing security cards to visit the toilets.

The full results of how the AI model performed on 50 tier 4 problems are yet to be disclosed. But He was struck by how much the tech has improved since 2022, when “ChatGPT couldn’t even find the tenth digit of seven divided by 13 . . . now it’s beginning to do something more intelligent.”

He explained how the AI, called o4-mini, was able to solve some of the problems in minutes, writing mathematical scripts and drawing on external specialist software. Most impressive, he said, were detailed literature searches, turning up obscure but critical papers and coding shortcuts. Another attendee, Ken Ono, a University of Virginia mathematician and freelance consultant for Epoch, called the results “frightening”. 

The project is not without controversy: in January, Epoch apologised for initially failing to disclose OpenAI’s financial backing of FrontierMath, leading to suspicions that the company’s AI models, including o4-mini, would have favoured access to some of the unseen maths problems used for benchmarking.

AI models cannot yet tackle the hardest maths challenges. Even so, one can imagine the next generation of machines thinning out the next generation of human mathematicians. That could shrink the pool from which future Fields medallists are drawn; there might be fewer hopefuls to attack famous unsolved problems like the Riemann Hypothesis, one of six carrying a $1mn bounty.

While the use of prime numbers in encryption shows the practical use of mathematics, there is something quite profound about living in a universe filled with dazzling concepts like zero, infinity and imaginary numbers. Perhaps fretting over whether the addition of AI might subtract from this human endeavour is not that irrational after all.

版权声明:本文版权归FT中文网所有,未经允许任何单位或个人不得转载,复制或以任何其他方式使用本文全部或部分,侵权必究。

玛格丽特•米切尔:通用人工智能不过是“氛围和蛇油”

人工智能伦理领域的先驱之一解释了为何人类需求应成为科技发展的核心驱动力。

谁能在伊朗问题上影响特朗普?

从JD•万斯到“猩猩”,MAGA忠诚支持者和军方领导人正争夺在椭圆形办公室的影响力。

为什么华尔街害怕一个33岁的政治局外人

进步派候选人佐赫兰•马姆达尼搅动了纽约市长选举,城市精英们想要阻止他。

以色列空袭伊朗伊斯法罕核设施,特朗普权衡是否介入战争

美国总统认为欧洲领导的停火谈判无效。

扎克伯格如何释放他内心的角斗士

Meta老板的转变震惊了公司内部的自由主义者,但他最亲密的盟友说,这就是他一直以来的样子。

一周新闻小测:2025年6月21日

您对本周的全球重大新闻了解如何?来做个小测试吧!
设置字号×
最小
较小
默认
较大
最大
分享×