AI is too important to be monopolised - FT中文网
登录×
电子邮件/用户名
密码
记住我
请输入邮箱和密码进行绑定操作:
请输入手机号码,通过短信验证(目前仅支持中国大陆地区的手机号):
请您阅读我们的用户注册协议隐私权保护政策,点击下方按钮即视为您接受。
FT商学院

AI is too important to be monopolised

Public investments are essential to levelling the computational playing field

Antitrust agencies must ensure that the largest AI companies do not grow impossibly large

The writer is international policy director at Stanford University’s Cyber Policy Center and special adviser to the European Commission

The Wall Street Journal reported last week that OpenAI’s chief executive Sam Altman would seek up to $7tn in funding to reshape the global semiconductor industry to power artificial intelligence. The fact that one company could pitch a funding target larger than the gross domestic product of Japan and not be laughed out of the room is yet another sign of generative AI’s intense market concentration.

From the promise of medical breakthroughs to the perils of election interference, the hopes of helpful climate research to the challenge of cracking fundamental physics, AI is too important to be monopolised.

Yet the market is moving in exactly that direction, as resources and talent to develop the most advanced AI sit firmly in the hands of a very small number of companies. That is particularly true for resource-intensive data and computing power (termed “compute”), which are required to train large language models for a variety of AI applications. Researchers and small and medium-sized enterprises risk fatal dependency on Big Tech once again, or else they will miss out on the latest wave of innovation. 

On both sides of the Atlantic, feverish public investments are being made in an attempt to level the computational playing field. To ensure scientists have access to capacities comparable to those of Silicon Valley giants, the US government established the National AI Research Resource last month. This pilot project is being led by the US National Science Foundation. By working with 10 other federal agencies and 25 civil society groups, it will facilitate government-funded data and compute to help the research and education community build and understand AI. 

The EU set up a decentralised network of supercomputers with a similar aim back in 2018, before the recent wave of generative AI created a new sense of urgency. The EuroHPC has lived in relative obscurity and the initiative appears to have been under-exploited. As European Commission president Ursula von der Leyen said late last year: we need to put this power to use. The EU now imagines that democratised supercomputer access can also help with the creation of “AI factories,” where small businesses pool their resources to develop new cutting-edge models. 

There has long been talk of considering access to the internet a public utility, because of how important it is for education, employment and acquiring information. Yet rules to that end were never adopted. But with the unlocking of compute as a shared good, the US and the EU are showing real willingness to make investments into public digital infrastructure.

Even if the latest measures are viewed as industrial policy in a new jacket, they are part of a long overdue step to shape the digital market and offset the outsized power of big tech companies in various corners of our societies.  

These governments have made the right decision by expanding access to foundational compute resources, but such investments are only the first stage and must work hand in glove with legislative and regulatory interventions. Antitrust agencies must ensure that the largest AI companies do not grow impossibly large. Security agencies must prevent malign actors from accessing critical computational resources.

Non-discrimination watchdogs have their hands full with the various ways in which AI applications display bias and discrimination. Similarly, public AI investments are complementing policies that are meant to prevent market monopolies from becoming knowledge monopolies as well. While the EU was smart to encode access to data for academics in the Digital Services Act that spells out the responsibilities of platform companies, it has not explicitly included such provisions in the AI Act. Companies are required to report energy use and data inputs, for example, but trade secrecy will be respected, allowing for significant opacity on key details.

Going forward, investments in public digital infrastructure must increase — and state funds must be diverted away from Big Tech, even if they are for projects with a public function. In 2022, the US government invested $3.3bn in AI, a sizeable sum but nothing compared to the tens of billions invested annually by industry or the trillions sought by Altman.

Preventing AI monopolies is part of a healthy innovation climate, and it is increasingly critical for a better public understanding of the technology. In this case, those goals overlap. Historically, academic research has been at the roots of many valuable innovations. That ecosystem must not be choked off.  

版权声明:本文版权归FT中文网所有,未经允许任何单位或个人不得转载,复制或以任何其他方式使用本文全部或部分,侵权必究。

美国大型科技公司承诺在英国投资建设AI基础设施

在特朗普访访之际,微软、谷歌和英伟达关于数据中心的数十亿美元承诺仍接连出台。

对富人征税有什么问题?

围绕收入和消费设计的财政体系很难抓住财富,而且亿万富翁的流动性很高。

特朗普的关税对印度经济意味着什么?

印度纺织、珠宝等劳动密集型行业预计将遭受美国关税最严重的打击。

欧洲寻求利用乌克兰技术打造防俄“无人机墙”

布鲁塞尔鼓励各国政府动用欧盟资金,联合采购在乌克兰已被证明有效的无人机与反无人机系统。

瑞士央行:美国科技业中的“巨鲸”

保守的瑞士央行已成为全球最大的科技投资者之一,投资苹果、微软、亚马逊、英伟达和Meta超过420亿美元。

东京能否吸引金融人才来管理其数万亿美元资金?

东京正处在数十年来最接近全球金融枢纽的时刻,但成败取决于能否吸引人才。
设置字号×
最小
较小
默认
较大
最大
分享×